Whose Line Is It? – Quote Attribution through Recurrent Neural Networks
نویسنده
چکیده
This paper presents a recurrent neural network framework for the problem of attributing spoken lines to characters in a screenplay or novel. We study these quotes as a sequence in the absence of additional context, e.g. descriptions of scenes or actions, from the text surrounding them. Instead, attributions may only be made on the basis of learned expectations for how each character speaks, as well as an understanding of how they converse with each other. We use gated-feedback recurrent neural networks, trained in a supervised fashion, for modeling both of these aspects. We evaluate the prediction model on episodes of the television show Futurama and demonstrate improvement over simpler neural network constructions.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملQuote Attribution for Literary Text with Neural Networks
We propose a method for using neural networks to attribute quotes in literary texts. Since previous work has been unable to successfully solve this problem based on bag-of-words features, we study the issue of whether this is due to the limited expressiveness of such features. By re-framing the modeling of quotes and characters as based off of word vectors, we hope to demonstrate that individua...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملStabilization of Nonlinear Control Systems through Using Zobov’s Theorem and Neural Networks
Zobov’s Theorem is one of the theorems which indicate the conditions for the stability of a nonlinear system with specific attraction region. We have applied neural networks to approximate some functions mentioned in Zobov’s theorem in order to find the controller of a nonlinear controlled system whose law in a mathematical manner is difficult to make. Finally, the effectiveness and the applica...
متن کامل